Feeds:
Posts
Comments

Archive for the ‘Lua’ Category

Getopt for Lua

When I switched to a new programming language, one of the first thing I do is to find or implement a getopt() that is compatible with the elegant Berkeley getopt.c.

When I started to actually use Lua two months ago, I also spent some time to look for a getopt function, but none of them is satisfactory. PosixGetOpt seems to bind the Posix C library and may have compatibility issue. CommandLineModule is powerful, but seems overkilling. AlternativeGetOpt tries to mimic the Berkeley getopt, but its functionality is very limited in comparison to the C version. There is a getopt module in lua-stdlib, but it has massive dependencies and is not Berkeley compatible. lua-alt-getopt is the closest I can find, but I need a lightweight version without the getopt_long support, such that I can copy-paste a function without worrying about dependency.

In the end I implemented my own getopt for Lua. It is a single function in 50 lines. The following shows an example about how to use this function.

for opt, optarg in os.getopt(arg, 'a:b') do
    print(opt, optarg)
end

BTW, I have also started to build my own Lua library. The goal is still: free, efficient and independent. If you want to use a function, you may just copy and paste one or a few relevant functions. The length of a dependency chain is maximally 3 right now.

Read Full Post »

Amazed by LuaJIT

I have kept looking for a replacement of Perl for several years. Now I have found it: Lua, although the decision is not made based on the language itself, but on its implementation LuaJIT.

LuaJIT is by far faster than all the other scripting languages and even comes close to the speed of Java with fewer lines of code and a smaller memory footprint. To further confirm the efficiency of LuaJIT, I implemented matrix multiplication in C, Lua, JavaScript and Perl. On my laptop, the C implementation multiplies two 1000×1000 matrices in 2.0 seconds (BTW, 1.4 sec if I use “float”; 0.9 if SSE is used; 26.8 sec without matrix transpose), LuaJIT-jit in 2.3 seconds, LuaJIT-interpreter in 24 sec, JavaScript in 40 sec with V8, Lua-5.1.4 in 64 sec and Perl in 283 sec. As a dynamically typing scripting language, LuaJIT achieves a speed comparable to C, which is simply amazing.

Not only that, LuaJIT fixes IMO a major weakness of Lua: the lack of native bit operations; the upcoming Foreign Function Interface (FFI) library, according to the LuaJIT roadmap 2011, will definitely make Lua one of the best scripting languages to bind dynamic libraries, even surpassing Python’s elegant ctypes library.

With the unparalleled efficiency and the addition of important features, LuaJIT makes Lua the best scripting language at present in my opinion. Mike Pall, the single developer of LuaJIT, commented in an interesting discussion that it is possible to implement a JIT compiler for Javascript, a language similar to Lua in many aspects, as efficient as LuaJIT. But Javascript is not a general-purpose programming language by design. Standardizing additional language features would take years. As to other scripting languages, my impression is their complexity is the major obstacle to the implementation of an efficient JIT compiler.

Probably more developers are concerned about the lack of standard libraries in Lua. Personally, I do not see why Lua cannot be a general-purpose scripting language. Probably the creators of Lua just did not intend to or have energy to implement a comprehensive standard library. I hope someone may organize a group of good programmers to develop such a library. Furthermore, with the upcoming FFI library in LuaJIT, we may be able to easily call library routines, which may solve the lack of library issue again with one man only.

LuaJIT is the future of all scripting languages. Even if LuaJIT were not adopted as widely as I wish it to be, I hope the advanced techniques and ideas developed in LuaJIT can be incorporated into other interpreters and JIT compilers.

Read Full Post »